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For the asymmetric fragment, the unit cell of the transla- 
tion function is given by 

T(r) = T( r+ to)  

F F S 

= min min min P[(R~- l ) ( r+ to )+t~+R~r i - r / ] ,  (4) 
i = l  j = ,  s = l  

where t,, is the new translation period. Equation (4) can 
only be satisfied if (t,.-centring) 

(R~ - l)to - to  -= 0 (mod 1), s - - l , 2  . . . .  ,S. (5) 

Equation (5) defines the permissible origin shifts 
(Giacovazzo, 1974). The translation function has no other 
symmetry because of general coordinates, r~, of the frag- 
ment. For the asymmetric fragment the unique region of 
the translation function is given by the whole cell of the 
MIF. These unit cells coincide with those of normalizers 
of the space groups and are tabulated in International Tables 
for Crystallography (1987). The unique region is equal to 
0-½ for almost all triclinic, monoclinic and orthorhombic 
space groups. 

If the fragment possesses a symmetry, (2) can be rewritten 

F F H H S 

T(r) =min  min min min min P[(Rs - l ) r+t~ 
i = l  j = l  k = !  / = 1  x = l  

+RsGpGkr i - GpGtrj], (6) 

where H is the order and Gk are operators of the point 
group of the fragment and F is now the number of indepen- 
dent atoms in the fragment. If the fragment contains a 
correctly oriented symmetry element so that Gp = Rp then 

F" F H H S 

T ( R p r + t p )  = min min min min min P [ ( R ~  - i ) ( R p r + t p )  
i = l  J = i  k = l  I = i  s = l  

+L +RsRpGkrt - R r G t r  i] 

F" F" H H S 

= rain min min min min P [ ( R , .  - l ) r +  t , .  
i = 1  j = l  k = l  / = 1  m = l  

+RmGkr, - G , r / ]  = T(r) (7) 

because (R~ - l ) ( R p r + t p ) + t s  = Rp[(Rm - l ) r + t , , ] ,  P(r) = 
P(Rp r), where R m = R plRs Rp, and rearrangement of space- 
group operators. This means that the translation function 
has the symmetry of the MIF Subgroup. The subgroup 
contains those symmetry operations which are related to 
the symmetry operations of the point group of the fragment. 
The unique region of the translation function is given by 
the asymmetric part of  the MIF  subgroup. 

Example. For a structure with space group P2, /c  and 
cell dimensions a, b, c. The MIF group is P2/m and the 
MIF unit cell is a/2, b/2, c/2. The search region of the 
translation function for a single atom is a/4, b/4, c/2 (or 
a/2, b/4, c/4). For the asymmetric fragment the search 
region is a/2, b/2, c/2. If the fragment has a twofold axis 
parallel to b, the MIF subgroup is P2 and the s~arch volume 
is a/4, b/2, c/2 (or a/2, b/2, c/4). If the fragment has a 
plane perpendicular to b, the MIF subgroup is Pm and the 
search volume is a/2, b/4, c/2. If the fragment has symmetry 
2/m with twofold axis parallel to b, the search volume of 
the translation function is the same as that for the single- 
atom case. 
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Abstract 

The formulae for Fourier and inverse Fourier transforms 
have been generalized to take into account crystal symmetry 
using group theory. When the Fourier components (struc- 
ture factors) are restricted to a given reciprocal plane, the 
two-dimensional inverse Fourier transform yields the pro- 
jection of the charge/spin density in the unit cell in direct 
space, parallel to the axis normal to that plane. The formulae 
above are further generalized to this two-dimensional case. 
The latter case is central to a polarized neutron diffraction 
data analysis using maximum entropy. 

0108-7673/91 / 030293-03503.00 

Introduction 

The recent introduction of new image reconstruction tech- 
niques (IRT's) such as maximum entropy (see Bricogne, 
1984; Livesey & Skilling, 1985) calls for a reassessment of 
key formulae in crystallography. Clearly, structure factors, 
crystal symmetry, projections and Fourier synthesis are not 
new topics (see Waser, 1955; Bertaut, 1955, 1956, 1959; 
Bertaut & Waser, 1957; Buerger, 1960; Cornwell, 1969; 
Lax, 1974, among others). Nevertheless, applying new 
IRT's entails developing new mathematical tools and it 
is the aim of the present communication to provide the 
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reader with a set of complementary useful and practical 
relations. 

The problem to be addressed here is that of retrieving 
the charge/spin density from X-ray/magnetic neutron 
structure factors. This is a three-dimensional problem. A 
similar problem is to retrieve the projected density from a 
selection of structure factors belonging to the same 
reciprocal plane, which is now a 2D problem. 

We stress here that the phases of the Fourier components 
are assumed to be known. 

The standard non-parametric IRT, based upon inverse 
Fourier transforms, uses the following steps: (a) 
obtain/measure a set of symmetrically independent struc- 
ture factors; (b) derive from it a completed set of symmetri- 
cally dependent structure factors; (c) use the general inverse 
Fourier transform expression for either the 2D or the 3D 
case. 

The alternative non-parametric IRT, based upon 
maximum entropy, demands that the direct and inverse 
Fourier transform 'expressions be modified to incorporate 
symmetry requirements: this is due to the reduction of the 
computations involved (since only symmetrically indepen- 
dent structure factors are required). 

To conclude this introduction, it is worth mentioning 
that the 'best' Patterson map (Buerger, 1960, p. 554) can 
be retrieved using the same mathematical formalism. 

Notat ions  and definitions 

Let ~3 be the space group of a given crystal X, 3" the pure 
translation group, G =  ~3/3 the related factor group of 
order N. Let R = (4, 13) represent an element ~ = (4, 13)3 
of G, so that Rr = ~ r +  13, where r belongs to direct space. 

In the case when the projection along the crystallographic 
direction n = (uvw) is considered, let Ca, b, c) describe the 
unit cell and (a*, b*, c*) the related reciprocal basis. Let A, 
B, C describe a second basis, so that C is parallel to n and 
A and B are the projections of two lattice vectors A' and 
B' onto the plane ~ normal to n. Note that ~ is a reciprocal- 
lattice plane. Finally, let V be the volume of the unit cell, 
S be its projected surface and (x, y, z) or (X, Y, Z) the 
coordinates of r in both bases. Call s(r) the sought density 
and p(r) its projection. Let F(K) be the structure factor for 
a given vector K = ha* + kb* + lc* of the reciprocal lattice. 
The following formulae hold: 

I l l  

F ( K ) =  V~S~dxdydzexp{2~riKr}s(r)  (1) 
0 0 0  

s(r) = V -~ ~ exp {-21riKr}F(K). (2) 
K 

In the case of projections, one uses the second basis 
(A,B,C)  defined above and only scattering vectors K 
orthogonal to C are considered. The relevant formulae then 
read: 

1 1  1 

F ( K ) = ( V / C )  ~ I d X  dYexp{2~ iKr}C  I s ( r )dZ  (3) 
0 0  0 

1 1  

F(K) = S j" I dX d Y exp {2~riKr}p(r) (4) 
0 0  

p(r) = S -l E exp {-2rr iKr}F(K) (5) 
K¢9*  

where C = ua+  vb+ wc, C = ICI and S = V/C. 

The 3 D  case 

Our goal is to include symmetry requirements in the 
aforementioned formulae (1) and (2). 

The direct Fourier transform 

Since any element R of ~d leaves s(r) invariant, one can 
write 

s ( r ) =  N -I . E s(/~r). (6) 
R ~ r ~  G 

In the formula above, a convenient choice for /~ is the 
symmetry operation listed in International Tables for Crys- 
tallography (1989). The integral in (I) can now be split into 
N integrals. For each of these, making the change of vari- 
able r '=  Rr, one obtains: 

ISI dr exp {27riK. r}s(Rr) 
v 

= II~ dr' exp {2~riK./~-'r '}s(r'). (7) 
v 

Replugging (6) and (7) into (1), one finally obtains 

F(K) = N -t y ~S dr exp {2~-iK./~-~r}s(r) (8a) 
~er v 

= N -~ ~, ~I~drexp{2rriK.fir}s(r)  (8b) 
fi~ v 

=]'~vSdr { N - t  ~ exp {27riK./~r}} s(r) (8c) 
~er 

1 1  i 

= V~l$dxdydz (exp{2~r iK . r} ) s ( r ) .  (8d) 
o 0 0  

Thus, the generalized 3D Fourier transform incorporates 
the average of exp {2~-iK. r} taken over all the symmetry 
operations instead of the bare exlY{27riK, r}. 

A much shorter and much more general derivation in- 
volves group theory (Hamermesh, 1964)" only the projec- 
tion of the integrand [=exp {2~-iK. r}s(r)] onto the identity 
representation gives a non-vanishing contribution to the 
integral (1). Since s(r) is invariant, the totally symmetric 
integrand involves the average of the exponential term over 
all group elements. 

An important relation 

Waser (1955) has derived a key relation linking F(K)'s 
related through a given symmetry operation R. With R = 
(4, 13) and our notation, this formula can be recast into 

F(c~K) = exp {2wic~K. [3}F(K). (9) 

The inverse Fourier transform 

Starting from (2), we first split the sum over all K's into 
a double sum: 

E = ~ ~ , (10a) 
g Ko ~(Ko) 

where the Ko'S are symmetrically independent and the 
second sum is over the left cosets ~(Ko) of G with respect 
to .~(Ko)...@(Ko) is the subgroup of G made out of those 
elements ~ = (4, ~ ) ~  = R ~  for which ~Ko = Ko. All the 
cosets have the same number of elements, g(Ko), which is 
also the order of .~(Ko), and which we may call the 
degeneracy factor of Ko. We can now write 

=[1/g(Ko)]  E = [ l / g ( K o ) ] ~ .  (10b) 
~e(Ko) ~ • G 
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The last equality results from the isomorphism between G 
and the point-symmetry group of X (Cornwell, 1969, 
p. 172). Now, it results from (2) and (10) that 

s(r) = V -1 Y. [1/g(Ko)] ~ exp {-2~i~Ko.  r}F(~Ko). 
Ko ,~ 

( l l a )  

Now, using (9): 

s(r) = V -l E [ l /g(Ko)]  E exp {-2¢riaKo. r} 
go ~; 

x exp {2wit~Ko. 13}F(Ko) (11 b) 

= V-IY~ Y~ [1/g(Ko)]F(Ko) 
Ko ~t ~ G 

x exp {-2¢riKo./~-~r} (11 c) 

= v - ' E  E [l /g(Ko)]F(Ko) 

xexp {-2~'iKo./~r}. ( l l d )  

Introducing again the averaged exponential over all group 
elements, we ultimately get 

s(r) = V -~ ~ (exp {-2~riKo. r})[N/g(Ko)]F(Ko). (12) 
Ko 

A practical note. In practice, in order to check that 
the condition Ko--~Ko is met, define Q = Ko-t~Ko. This 
condition is then equivalent to abs(a. Q ) + a b s  (b. Q ) +  
abs (c. Q) = 0. 

The 2D case: recovery of  the projected density in direct space 

The importance of this section stems from its direct connec- 
tion with polarized neutron diffraction experiments on 
single crystals. In such a case, the crystal is set so that a 
chosen crystallographic direction n[ = (uvw)] is vertical and 
perpendicular to the scattering plane ~. 

The direct Fourier transform 

Much of the spirit of the 3D case is preserved, except 
for a restriction to those symmetry elements belonging to 
~d for which exp {2~riK. Rr} is independent of Z for all 
K's belonging to ~. These elements form a group, ~'. Since 
the pure translation group ff is still an invariant subgroup 
of ~d', the factor group G' = ~ ' / 3  is unambiguously defined. 
The sought formula reads in this case: 

11 

F ( K ) = S ~ d X  d Y ( e x p { 2 ~ i K . r } ) p ( r ) ,  (13) 
O 0  

where the average is taken over all N'  elements of G', p(r) 
is equal to C ~1 o s0r) dZ  and hence Z independent,  and only 
r's belonging to ~ need to be considered. 

A second practical note. The condition K. /~r  inde- 
pendent of Z is conveniently tested by checking if the 
equality 

C 4 = (C.  c~C) 2 (14) 

holds. This stems from the fact that the condition above is 
equivalent to K. ~C = 0 for all K's belonging to ~. Hence, 
it is equivalent to t~C being parallel to C, which amounts 
to (14). 

The inverse Fourier transform 

The demonstration is identical to that of the 3D case. 
The result now reads: 

p(r) = S- '  E (exp {-2~'iKo.r})[N'/g '(Ko)]F(Ko).  

(15) 

The Ko's, still a symmetrically independent set, are now 
restricted to the plane ~. The degeneracy factor is now 
g'(Ko). Once again, the key result is the occurrence of the 
average exponential taken over all relevant symmetry 
operations. 

Discussion 

Both the 2D and 3D direct and inverse Fourier transforms 
have been generalized to incorporate the spatial symmetry 
of a given crystal. Except for a degeneracy factor, we have 
shown that the two most relevant entities are: (i) a set of 
symmetrically independent structure factors; and (ii) the 
averaged exponential term over all symmetry operations. 
The procedure described in this paper has been used to 
retrieve effectively the projected magnetization density from 
polarized neutron diffraction data (Papoular & Gillon, 
1990a, b), using both maximum entropy (which involves 
the direct Fourier transform) and the standard inverse Four- 
ier procedure. 

The author thanks Professor M. Lambert for support. 
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stimulating discussions and a critical reading of the manu- 
script, as well as to G. Heger, B. Gillon and M. Quilichini 
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